Aspartyl/Asparaginyl beta-hydroxylase (AspH)oxygenase and TPR domains in complex with manganese, N-oxalylglycine and cyclic peptide substrate mimic of factor X
This domain is responsible for the high-affinity binding of calcium ions. This domain contains post-translational modifications of many glutamate residues by Vitamin K-dependent carboxylation to form gamma-carboxyglutamate (Gla).
Iron (II)/2-oxoglutarate (2-OG)-dependent oxygenases catalyse oxidative reactions in a range of metabolic processes. Proline 3-hydroxylase hydroxylates proline at position 3, the first of a 2-OG oxygenase catalysing oxidation of a free alpha-amino a ...
Iron (II)/2-oxoglutarate (2-OG)-dependent oxygenases catalyse oxidative reactions in a range of metabolic processes. Proline 3-hydroxylase hydroxylates proline at position 3, the first of a 2-OG oxygenase catalysing oxidation of a free alpha-amino acid. The structure of proline 3-hydroxylase contains the conserved motifs present in other 2-OG oxygenases including a jelly roll strand core and residues binding iron and 2-oxoglutarate, consistent with divergent evolution within the extended family. This family represent the arginine, asparagine and proline hydroxylases. The aspartyl/asparaginyl beta-hydroxylase (EC:1.14.11.16) specifically hydroxylates one aspartic or asparagine residue in certain epidermal growth factor-like domains of a number of proteins [1].